OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING WITH GENERALIZED (F, ρ) –UNIVEXITY

Tarulata R. Patel Department of Statistics, Ambaba Commerce College, MIBM and DICA, Surat.

ABSTRCT

In this paper, we have considered nondifferentiable multiobjective optimization problem. A number of duality theorems for Mond-Weir type dual are also established. Duality results have been established assuming the functions to be generalized (F, ρ)-univexity.

Key Words: (F, ρ)-univexity; Sufficiency; Nondifferentiable multiobjective

programming; Duality

1. INTRODUCTION:

Wolfe [1] considered dual for nonlinear programming problems. While studying duality under generalized convexity, Mond and Weir [2] proposed a number of different duals for nonlinear programming problems with nonnegative variables and derived various duality theorems under appropriate pseudo-convexity/quasi-convexity assumptions.

Optimality and duality results for several mathematical programs were defined by Rueda et al. [3] by combining the concept of type I functions and univex functions. Optimality and duality results for a multiple–objective program was obtained Mishra [8] by combining the concept of pseudoquasi, type I, quasi-pseudo type I, strictly pseudoquasi type I and univex functions. A new class of generalized type I univex functions was introduced by Mishra et al. [11] by extending weak strictly pseudoquasi type I, strong pseudoquasi type I functions etc.

A nondifferentiable multiple objective programming problem was considered by Mond et al.[10]. Mond-Weir type and Wolfe type duals were formulated. Gulati and Talaat [12] considered a nondifferentiable multiobjective programming problem and Fritz-John and Kuhn-Tucker type sufficient conditions were derived for efficient and properly efficient solutions respectively. Zhang and Mond [9] introduced duality results for nondifferentiable programs under generalized invexity assumptions. Second order Mangasarian type and general Mond-Weir type duals for a class of nondifferentiable multiobjective programming problems was considered by Ahmad and Sharma [10]. Patel [11] has considered Mangasarian type and general Mond-Weir type duals and some duality theorems are established for nondifferentiable multiobjective programming problems under second order (b,F, ρ)-convexity assumptions.

In this paper, we consider a nondifferentiable multiobjective optimization problem. A number of duality theorems for Mond-Weir type dual are also established.

2. NOTATIONS AND PRELIMINARIES:

We consider the following nondifferentiable multiobjective programming problem:

(NMP) Minimize
$$f(\mathbf{x}) = \left[\left(f_i(\mathbf{x}) + (\mathbf{x}^t A_1 \mathbf{x})^{\frac{1}{2}} \right), \dots, \left(f_k(\mathbf{x}) + (\mathbf{x}^t A_k \mathbf{x})^{\frac{1}{2}} \right) \right],$$

subject to $h_j(\mathbf{x}) \le 0,$ (2.1)
 $\mathbf{x} \in \mathbf{X}.$ (2.2)

where, f_i , i=1,2,...,k and h_j , j=1,2,...,m, are assumed to be continuously differentiable functions, X be an open convex subset of R^n and A_i are n x n positive semidefinite symmetric matrix.

Let U denote the set of feasible solutions of (NMP).

Definition 2.1: A feasible solution x⁰ is efficient if there is no other feasible solution x for (NMP) such that

$$f_i(x) + (x^t A_i x)^{\frac{1}{2}} \le f_i(x^0) + (x^{0t} A_i x^0)^{\frac{1}{2}}, \quad \text{for } i=1,2,...,k,$$

and

$$f_s(x) + (x^t A_s x)^{\frac{1}{2}} < f_s(x^0) + (x^{0t} A_s x^0)^{\frac{1}{2}}$$
, for some s.

Definition 2.2: An efficient solution x^0 of (NMP) is said to be properly efficient solution for (NMP) if there exists a scalar M > 0 such that for every feasible x

$$\begin{split} \mathbf{f}_{i}(\mathbf{x}) + (\mathbf{x}^{t}\mathbf{A}_{i}\mathbf{x})^{\frac{1}{2}} &< \mathbf{f}_{i}(\mathbf{x}^{0}) + (\mathbf{x}^{0t}\mathbf{A}_{i}\mathbf{x}^{0})^{\frac{1}{2}} \\ \Rightarrow \left[\left(\mathbf{f}_{i}(\mathbf{x}^{0}) + (\mathbf{x}^{0t}\mathbf{A}_{i}\mathbf{x}^{0})^{\frac{1}{2}} \right) - \left(\mathbf{f}_{i}(\mathbf{x}) + (\mathbf{x}^{t}\mathbf{A}_{i}\mathbf{x})^{\frac{1}{2}} \right) \right] \\ &\leq \mathbf{M} \left[\left(\mathbf{f}_{s}(\mathbf{x}) + (\mathbf{x}^{t}\mathbf{A}_{s}\mathbf{x})^{\frac{1}{2}} \right) - \left(\mathbf{f}_{s}(\mathbf{x}^{0}) + (\mathbf{x}^{0t}\mathbf{A}_{s}\mathbf{x}^{0})^{\frac{1}{2}} \right) \right] \end{split}$$

for some s such that

$$f_s(x) + (x^t A_s x)^{\frac{1}{2}} > f_s(x^0) + (x^{0t} A_s x^0)^{\frac{1}{2}}.$$

Let X be an open convex subset of Rⁿ.

Now, we introduce a class of type I (F, ρ)-univex functions and their generalizations for nondifferentiable multiobjective programming problem which will be used to derive some important properties of (NMP) and other results.

Let X be an open convex subset of \mathbb{R}^n and let \mathbb{R}_+ be the set of positive real numbers. Let the functions f_i i=1,2,...,k; h_j , j=1,2,...,m; η and ρ be as follows: $f_i,h_j:X\rightarrow\mathbb{R}$, $w_i \in \mathbb{R}^n$, A_i are nxn positive semidefinite symmetric matrix,

$$\theta_0, \theta_1: X \times \mathbb{R}^n \to \mathbb{R}, \ \eta: X \times X \to \mathbb{R}^n, \ w_i \in \mathbb{R}^n, \ b_0, \ b_1: X \times X \to \mathbb{R}_+, \ \rho = (\rho_i^1, \rho_j^2), \ \rho_i^1 = (\rho_1^1, \rho_2^1, \dots, \rho_k^1) \in \mathbb{R}^k,$$

$$\rho_{j}^{2} = (\rho_{1}^{2}, \rho_{2}^{2}, ..., \rho_{m}^{2}) \in \mathbb{R}^{m}.$$

Definition 2.3: The problem (NMP) is said to be strong pseudoquasi type I (F, ρ)-univex at x, $x^0 \in X$, if there exist real valued functions b_0 , b_1 , θ_0 , θ_1 , ρ and $w_i \in \mathbb{R}^n$ such that

$$\begin{split} b_{0}(\mathbf{x}, \mathbf{x}^{0}) \theta_{0} \Big[\Big\{ f_{i}(\mathbf{x}) + \mathbf{x}^{t} A_{i} \mathbf{w}_{i} \Big\} &- \Big\{ f_{i}(\mathbf{x}^{0}) + \mathbf{x}^{0t} A_{i} \mathbf{w}_{i} \Big\} \Big] \leq 0 \\ \Rightarrow F[\mathbf{x}, \mathbf{x}^{0}; (\eta(\mathbf{x}, \mathbf{x}^{0})^{t} \nabla f_{i}(\mathbf{x}^{0}) + A_{i} \mathbf{w}_{i}^{0})] + \rho_{i}^{1} d^{2}(\mathbf{x}, \mathbf{x}^{0}) \leq 0, \\ - b_{1}(\mathbf{x}, \mathbf{x}^{0}) \theta_{1}[h_{j}(\mathbf{x}^{0})] \leq 0 \Rightarrow F[\mathbf{x}, \mathbf{x}^{0}; (\eta(\mathbf{x}, \mathbf{x}^{0})^{t} \nabla h_{j}(\mathbf{x}^{0})] + \rho_{j}^{2} d^{2}(\mathbf{x}, \mathbf{x}^{0}) \leq 0. \end{split}$$

for all $i=\{1,2,...,k\}$ and $j=\{1,2,...,m\}$. If (NMP) is strong pseudoquasi type I (F, ρ)-univex at x,x⁰ \in X, (NMP) is said to strong pseudoquasi type I (F, ρ)-univex on X.

Definition 2.4: The problem (NMP) is weak quasi strictly pseudo type I (F, ρ)-univex at x,x⁰ \in X, if there exist real-valued functions b₀, b₁, θ_0 , θ_1 , ρ and w_i \in Rⁿ such that

$$\begin{split} b_{0}(\mathbf{x}, \mathbf{x}^{0}) \theta_{0} \Big[\Big\{ f_{i}(\mathbf{x}) + \mathbf{x}^{t} A_{i} \mathbf{w}_{i} \Big\} - \Big\{ f_{i}(\mathbf{x}^{0}) + \mathbf{x}^{0t} A_{i} \mathbf{w}_{i} \Big\} \Big] &\leq 0 \\ \Rightarrow F[\mathbf{x}, \mathbf{x}^{0}; (\eta(\mathbf{x}, \mathbf{x}^{0})^{t} \nabla f_{i}(\mathbf{x}^{0}) + A_{i} \mathbf{w}_{i}^{0})] + \rho_{i}^{1} d^{2}(\mathbf{x}, \mathbf{x}^{0}) < 0, \\ - b_{1}(\mathbf{x}, \mathbf{x}^{0}) \theta_{1}[h_{j}(\mathbf{x}^{0})] &\leq 0 \Rightarrow F[\mathbf{x}, \mathbf{x}^{0}; (\eta(\mathbf{x}, \mathbf{x}^{0})^{t} \nabla h_{j}(\mathbf{x}^{0})] + \rho_{j}^{2} d^{2}(\mathbf{x}, \mathbf{x}^{0}) < 0. \end{split}$$

for all $i=\{1,2,...,k\}$ and $j=\{1,2,...,m\}$. If (MP) is weak quasi strictly pseudo type I (F, ρ)-univex at x,x⁰ \in X, (MP) is said to be weak quasi strictly pseudo type I (F, ρ)-univex on X.

Definition 2.5: The problem (NMP) is weak strictly pseudo type I (F, ρ)-univex at x,x⁰ \in X, if there exist realvalued functions b₀, b₁, θ_0 , θ_1 , ρ and w_i \in Rⁿ such that

$$\begin{split} & b_0(\mathbf{x}, \mathbf{x}^0) \theta_0 \Big[\Big\{ f_i(\mathbf{x}) + \mathbf{x}^t A_i \mathbf{w}_i \Big\} - \Big\{ f_i(\mathbf{x}^0) + \mathbf{x}^{0t} A_i \mathbf{w}_i \Big\} \Big] \leq 0 \\ & \Rightarrow F[\mathbf{x}, \mathbf{x}^0; (\eta(\mathbf{x}, \mathbf{x}^0)^t \nabla f_i(\mathbf{x}^0) + A_i \mathbf{w}_i^0)] + \rho_i^1 d^2(\mathbf{x}, \mathbf{x}^0) < 0, \\ & - b_1(\mathbf{x}, \mathbf{x}^0) \theta_1[\mathbf{h}_j(\mathbf{x}^0)] \leq 0 \implies F[\mathbf{x}, \mathbf{x}^0; (\eta(\mathbf{x}, \mathbf{x}^0)^t \nabla \mathbf{h}_j(\mathbf{x}^0)] + \rho_j^2 d^2(\mathbf{x}, \mathbf{x}^0) < 0. \end{split}$$

for all $i=\{1,2,...,k\}$ and $j=\{1,2,...,m\}$. If (NMP) is weak strictly pseudo type I (F, ρ)-univex at x,x⁰ \in X, (NMP) is said to be weak strictly pseudo type I (F, ρ)-univex on X.

3. OPTIMALITY CONDITIONS:

We establish some sufficient optimality condition for x^0 to be an efficient solution of problem (NMP) under various generalized type I (F, ρ)-univex functions defined in the previous section.

Theorem 3.1: (Sufficiency): Suppose that

(i)
$$x, x^0 \in U$$
, (ii) There exist $\mu^0 \in \mathbb{R}^k$, $\mu^0 > 0, \lambda \in \mathbb{R}^m$, $\lambda^0 \ge 0$ and $w_i^0 \in \mathbb{R}^n$, such that

(a)
$$\mu^{0}[\nabla f_{i}(x^{0}) + A_{i}w_{i}^{0}] + \lambda^{0}\nabla h_{i}(x^{0}) = 0,$$

(b)
$$\lambda^0 \nabla h_i(\mathbf{x}^0) = 0$$
,

(c)
$$\mu^0 e=1$$
, where $e = (1, ..., 1)^T \in \mathbb{R}^k$.

(3.2)

(iii) The problem (NMP) is strong pseudoquasi type I (F, ρ)-univex at x, $x^0 \in U$ with respect to some b_0 , b_1 , θ_0 , θ_1 , ρ and $w_i \in \mathbb{R}^n$ for all feasible x. Then x^0 is an efficient solution to (NMP).

Proof: Suppose contrary to the result that x^0 is not an efficient solution to (NMP). Then there exists a feasible solution x to (NMP) such that

$$[f_i(x)+(x^tA_iw_i)] \leq [f_i(x^0)+(x^{0t}A_iw_i)]$$

By the properties of b_0 and θ_0 the above inequality, we have

$$b_{0}(\mathbf{x},\mathbf{x}^{0})\theta_{0}[\{f_{i}(\mathbf{x}) + (\mathbf{x}^{t}A_{i}w_{i})\} - \{f_{i}(\mathbf{x}^{0}) + (\mathbf{x}^{0t}A_{i}w_{i})\}] \leq 0.$$
(3.1)

By the feasibility of \mathbf{x}^{0} , we have $-\lambda^{0}\nabla \mathbf{h}_{i}(\mathbf{x}^{0}) \leq 0$.

By the properties of b_1 and θ_1 from above inequality, we have

$$-\mathbf{b}_{1}(\mathbf{x},\mathbf{x}^{0})\boldsymbol{\theta}_{1}[\lambda^{0}\nabla\mathbf{h}_{1}(\mathbf{x}^{0})] \leq 0.$$

By inequalities (3.1) and (3.2) and condition (iii), we have

 $F(x,x^{0};(\mu^{0}\nabla f_{i}(x^{0}) + A_{i}w_{i}^{0}) + \rho_{i}^{1}d^{2}(x,x^{0})) \leq 0$

and

$$F(x,x^{0};(\lambda^{0}\nabla h_{j}(x^{0})+\rho_{j}^{2}d^{2}(x,x^{0}))) \leq 0, \text{ since } \mu^{0} > 0$$

The above inequalities give $F(\mathbf{x},\mathbf{x}^{0};[\mu^{0}\nabla f_{i}(\mathbf{x}^{0}) + A_{i}w_{i}^{0} + \lambda^{0}\nabla h_{j}(\mathbf{x}^{0})] + (\rho_{i}^{1} + \rho_{j}^{2})d^{2}(\mathbf{x},\mathbf{x}^{0})) < 0,$

(3.3)

which contradict condition (iii). This completes the proof.

Theorem 4.3.2: (Sufficiency): Suppose that

(i)
$$x, x^0 \in U$$
, (ii) There exist $\mu^0 \in \mathbb{R}^k$, $\mu^0 > 0, \lambda \in \mathbb{R}^m$, $\lambda^0 \ge 0$ and $w_i^0 \in \mathbb{R}^n$, such that

(a)
$$\mu^{0}[\nabla f_{i}(x^{0}) + A_{i}w_{i}^{0}] + \lambda^{0}\nabla h_{i}(x^{0}) = 0,$$

(b)
$$\lambda^0 \nabla h_i(\mathbf{x}^0) = 0$$

(c)
$$\mu^0 e = 1$$
, where $e = (1, ..., 1)^T \in \mathbb{R}^k$.

(iii) The problem (NMP) is weak strictly pseudoquasi type I (F, ρ)-univex at x, $x^0 \in U$ with respect to some $b_0, b_1, \theta_0, \theta_1, \rho$ and $w_i \in \mathbb{R}^n$ for all feasible x, then x^0 is an efficient solution to (NMP).

Proof: Suppose contrary to the result that x^0 is not an efficient solution to (NMP). Then there exists a feasible solution x to (NMP) such that

$$[f_i(x) + (x^t A_i w_i)] \leq [f_i(x^0) + (x^{0t} A_i w_i)].$$

By the properties of b_0 and θ_0 and the above inequality, we get (3.1). By the feasibility of x^0 the properties of b_1 and θ_1 and the condition (iii), we have

$$F(x,x^{o};(\nabla f_{i}(x^{o}) + A_{i}w_{i}^{o}) + \rho_{i}^{1}d^{2}(x,x^{o})) < 0$$

and

$$F(x,x^{o};(\lambda^{o}\nabla h_{j}(x^{o})+\rho_{j}^{2}d^{2}(x,x^{o}))) \ \leq \ 0, \ \text{since} \ \mu^{o} \geq 0,$$

The above inequalities give $F(\mathbf{x},\mathbf{x}^{0};[\mu^{0}\nabla f_{i}(\mathbf{x}^{0}) + A_{i}w_{i}^{0} + \lambda^{0}\nabla h_{i}(\mathbf{x}^{0})] + (\rho_{i}^{1} + \rho_{j}^{2})d^{2}(\mathbf{x},\mathbf{x}^{0})) < 0$,

which contradict condition (iii). This completes the proof.

Theorem 4.3.3: (Sufficiency): Suppose that

(i)
$$x, x^0 \in U$$
, (ii) There exist $\mu^0 \in \mathbb{R}^k$, $\mu^0 > 0, \lambda \in \mathbb{R}^m$, $\lambda^0 \ge 0$ and $w_i^0 \in \mathbb{R}^n$, such that

(a)
$$\mu^{0}[\nabla f_{i}(\mathbf{x}^{0}) + A_{i}\mathbf{w}_{i}^{0}] + \lambda^{0}\nabla h_{i}(\mathbf{x}^{0}) = 0,$$

(b) $\lambda^0 \nabla h_i(x^0) = 0$,

(c) $\mu^0 e=1$, where $e=(1,...,1)^T \in R^k$.

(iii) The problem (NMP) is weak strictly pseudo type I (F, ρ)-univex at x, $x^0 \in U$ with respect to some $b_0, b_1, \theta_0, \theta_1, \rho$ and $w_i \in \mathbb{R}^n$ for all feasible x, then x^0 is an efficient solution to (NMP).

Proof: Suppose contrary to the result that x^0 is not an efficient solution to (NMP). Then there exists a feasible solution x to (NMP) such that

$$[f_i(x) + (x^t A_i w_i)] \leq [f_i(x^0) + (x^{0t} A_i w_i)].$$

By the properties of b_0 and θ_0 and the above inequality, we get (3.1).

By the feasibility of x^0 the properties of b_1 and θ_1 we get (3.2). By inequalities (3.1) and (3.2) and condition (iii), we have $F(\mathbf{x}, \mathbf{x}^0; (\nabla f_i(\mathbf{x}^0) + A_i \mathbf{w}_i^0) + \rho_i^1 d^2(\mathbf{x}, \mathbf{x}^0)) < 0$

and

 $F(\mathbf{x},\mathbf{x}^{o};(\lambda^{o}\nabla \mathbf{h}_{j}(\mathbf{x}^{o})+\rho_{j}^{2}\mathbf{d}^{2}(\mathbf{x},\mathbf{x}^{o}))) < 0, \text{ since } \mu^{o} \geq 0,$

The above inequalities give $F(\mathbf{x},\mathbf{x}^{0};[\mu^{0}\nabla f_{i}(\mathbf{x}^{0}) + A_{i}\mathbf{w}_{i}^{0} + \lambda^{0}\nabla h_{i}(\mathbf{x}^{0})] + (\rho_{i}^{1} + \rho_{i}^{2})d^{2}(\mathbf{x},\mathbf{x}^{0})) < 0$,

which contradict condition (iii). This completes the proof.

4. MOND-WEIR TYPE DUALITY:

We present some weak and strong duality theorems for (NMP) and the following Mond-Weir dual problem:

(NMWMD) Maximize $[f_i(u)+u^t A_i w_i]$, subject to $\mu[\nabla f_i(u) + A_i w_i] + \lambda \nabla h_j(u) = 0$, $\lambda \nabla h_i(u) \ge 0$,

 $\lambda \ge 0$, $\mu \ge 0$, and $\mu e = 1$, where $e = (1, \dots, 1)^T \in \mathbb{R}^k$. Denote by U^0 the set of all the feasible solutions of problem (NMWMD).

Theorem 4.1: (Weak Duality): Suppose that

(i) $x \in U$, (ii) $(u, \mu, \lambda) \in U^0$ and $\mu > 0$, (iii) The problem (NMP) is strong pseudoquasi type I (F, ρ)-univex at u

with respect to some $b_0, b_1, \theta_0, \theta_1$, ρ and $w_i \in \mathbb{R}^n$ then

 $[\mathbf{f}_{i}(\mathbf{x}) + (\mathbf{x}^{t} \mathbf{A}_{i} \mathbf{w}_{i})] \leq [\mathbf{f}_{i}(\mathbf{u}) + (\mathbf{u}^{t} \mathbf{A}_{i} \mathbf{w}_{i})]$

Proof: Suppose contrary to the result the above inequality holds,

i.e, $[f_i(x)+(x^tA_iw_i)] \leq [f_i(u)+(u^tA_iw_i)].$

By the property of b_0 and θ_0 and the above inequality, we have

(4.1)

 $b_0(x,u)\theta_0[\{f_i(x) + (x^tA_iw_i)\} - \{f_i(u) + (u^tA_iw_i)\}] \le 0$

By the feasibility of (u, μ, λ) , we have $-\lambda^0 \nabla h_i(u) \leq 0$.

By the properties of b_1 and θ_1 we get

$$-\mathbf{b}_{1}(\mathbf{x},\mathbf{u})\boldsymbol{\theta}_{1}[\lambda\nabla\mathbf{h}_{j}(\mathbf{u})] \leq 0 \tag{4.2}$$

By the inequalities (4.1) and (4.2) and condition (iii), we have

 $F(x,u;(\nabla f_i(u) + A_iw_i) + \rho_i^1 d^2(x,u)) \leq 0$

and

 $F(\mathbf{x},\mathbf{u};(\lambda \nabla h_i(\mathbf{u}) + \rho_i^2 d^2(\mathbf{x},\mathbf{u}))) \leq 0, \text{ since } \mu > 0,$

The above inequalities give
$$F(x,u;([\mu \nabla f_i(u) + A_i w_i + \lambda \nabla h_j(u)] + (\rho_i^1 + \rho_j^2)d^2(x,u)) < 0,$$

which contradicts (iii). This completes the proof.

Theorem 4.2 : (Weak Duality): Suppose that

(i) $x \in U$ (ii) $(u, \mu, \lambda) \in U^0$ and $\mu > 0$, (iii) Problem (NMP) is weak strictly pseudoquasi type I (F, ρ)-univex at

u with respect to some $b_0, b_1, \theta_0, \theta_1, \rho$ and $w_i \in \mathbb{R}^n$ then

 $[\mathbf{f}_{i}(\mathbf{x}) + (\mathbf{x}^{t} \mathbf{A}_{i} \mathbf{w}_{i})] \leq [\mathbf{f}_{i}(\mathbf{u}) + (\mathbf{u}^{t} \mathbf{A}_{i} \mathbf{w}_{i})].$

Proof: Suppose contrary to the result the above inequality holds,

i.e, $[f_i(x)+(x^tA_iw_i)] \leq [f_i(u)+(u^tA_iw_i)].$

By the properties of b_0 and θ_0 and the above inequality, we get (4.1). By the feasibility of (u, μ, λ) and properties of b_1 and θ_1 we get (4.2).

By the inequalities (4.1) and (4.2) and condition (iii),

we have

$$F(x,u;(\nabla f_i(u) + A_iw_i) + \rho_i^1d^2(x,u)) \leq 0$$

and

 $F(\mathbf{x},\mathbf{u};(\lambda \nabla \mathbf{h}_{i}(\mathbf{u})+\rho_{i}^{2}\mathbf{d}^{2}(\mathbf{x},\mathbf{u}))) \leq 0, \text{ since } \mu^{0} \geq 0,$

The above inequalities give $F(\mathbf{x},\mathbf{u};([\mu \nabla f_i(\mathbf{u}) + A_i \mathbf{w}_i + \lambda \nabla h_i(\mathbf{u})] + (\rho_i^1 + \rho_i^2)d^2(\mathbf{x},\mathbf{u})) < 0$,

which contradicts (iii). This completes the proof.

Theorem 4.3: (Weak Duality): Suppose that

(i) $x \in U$ (ii) $(u, \mu, \lambda) \in U^0$ and $\mu^0 \ge 0$, (iii) Problem (NMP) is weak strictly pseudo type I (F, ρ)-univex at u

with respect to some b_0 , b_1 , θ_0 , θ_1 , ρ and $w_i \in R^n$ then

 $[\mathbf{f}_{i}(\mathbf{x}) + (\mathbf{x}^{t}\mathbf{A}_{i}\mathbf{w}_{i})] \leq [\mathbf{f}_{i}(\mathbf{u}) + (\mathbf{u}^{t}\mathbf{A}_{i}\mathbf{w}_{i})].$

Proof: Suppose contrary to the result the above inequality holds,

i.e, $[f_i(x)+(x^tA_iw_i)] \leq [f_i(u)+(u^tA_iw_i)].$

By the properties of b_0 and θ_0 and the above inequality, we get (4.1) and the feasibility of (u, μ, λ) and properties of b_1 and θ_1 we get (4.2).

By the inequalities (4.1) and (4.2) and condition (iii), we have

$$F(x,u;(\nabla f_i(u) + A_iw_i) + \rho_i^1 d^2(x,u)) < 0$$

and

$$F(x,u;(\lambda \nabla h_i(u) + \rho_i^2 d^2(x,u))) < 0.$$

which contradicts condition (iii). This completes the proof.

Theorem 4.4: (Strong Duality): Let u^0 be an efficient solution for (NMP) and u^0 satisfies a constraint qualification for (NMP) (in Marusciac [17]). Then there exist $\mu^0 \in \mathbb{R}^k$ and $\lambda^0 \in \mathbb{R}^m$ such that (u^0, μ^0, λ^0) is feasible for (NMWMD). If any of the weak duality in theorems (4.1- 4.3) also holds. Then (u^0, μ^0, λ^0) is efficient solution (NMWMD).

Proof: Since u^0 is efficient for (NMP) and satisfies the constraint qualification for (NMP), then from the Kuhn-Tucker necessary optimality condition, we obtain $\mu^0 > 0$ and $\lambda^0 \ge 0$, such that $(\mu^0 \nabla f_i(u^0) + A_i w_i^0) + \lambda^0 \nabla h_j(u^0) = 0$, $\lambda^0 h_j(u^0) = 0$,

the vector μ^0 may be normalized according to $\mu^0 e = 1$. $\mu^0 > 0$, which gives that the triple (u^0, μ^0, λ^0) is feasible for (NMWMD). The efficiency of (u^0, μ^0, λ^0) for (NMWMD) follows from weak duality theorem. Thus completes the proof.

5. GENERAL MOND-WEIR TYPE DUALITY:

We consider a general Mond-Weir type of dual problem to (NMP) and establish weak and strong duality theorems under some mild assumption. We consider the following general Mond-Weir type dual problem:

(GNMWMD) Maximize $[f_i(u) + u^t A_i w_i] + \lambda_{J_0} h_{J_0}(u)e$	(5.1)
subject to $\mu[\nabla f_i(u) + A_i w_i] + \lambda \nabla h_j(u) = 0$, $\lambda_{J_q} h_{J_q} \ge 0, 1 \le q \le r$	(5.2) (5.3)

 $\lambda \ge 0, \mu \ge 0$ and $\mu e = 1$, where $e = (1, \dots, 1)^T \in R^k$, $J_a, 1 \le q \le r$, are partitions of the set N.

Theorem 5.1: (Weak Duality): Suppose that for all feasible x for (NMP) and for all feasible for (u, μ, μ, λ) (GNMWMD):

(a) $\mu > 0$ and $(f + \lambda_{J_0} h_{J_0}(.)e, \lambda_{J_q} h_{J_q}(.))$ is pseudoquasi type I (F, ρ)-univex at u for each q, $1 \le q$

 $\leq r$ with respect to some b_0 , b_1 , θ_0 , θ_1 and ρ ;

(b) $(f + \lambda_{J_0} h_{J_0}(.)e, \lambda_{J_0} h_{J_0}(.))$ is weak strictly pseudoquasi type I

(F, ρ)-univex at u for each q, $1 \le q \le r$ with respect to some b_0 , b_1 , θ_0 , θ_1 and ρ ;

(c) $(f + \lambda_{J_0} h_{J_0}(.)e, \lambda_{J_q} h_{J_q}(.))$ is weak strictly pseudo type I (F, ρ)-univex at u for each q, $1 \le q \le r$ with

respect to some b_0 , b_1 , θ_0 , θ_1 , ρ and $w_i \in R^n$;

then

$$[\mathbf{f}_{i}(\mathbf{x})+(\mathbf{x}^{t}\mathbf{A}_{i}\mathbf{w}_{i})] \leq [\mathbf{f}_{i}(\mathbf{u})+(\mathbf{u}^{t}\mathbf{A}_{i}\mathbf{w}_{i})] + \lambda_{\mathbf{J}_{0}}\mathbf{h}_{\mathbf{J}_{0}}(\mathbf{u})\mathbf{e}.$$

Proof: Suppose contrary to the result the above inequality holds. Thus, we have

$$[f_{i}(x)+(x^{t}A_{i}w_{i})] \leq [f_{i}(u)+(u^{t}A_{i}w_{i})] +\lambda_{J_{0}}h_{J_{0}}(u)e.$$

Since x is feasible for (NMP) and $\lambda \ge 0$, the above inequality implies that

$$[f_{i}(x) + (x^{t}A_{i}w_{i})] + \lambda_{J_{0}}h_{J_{0}}(x)e \leq [f_{i}(u) + (u^{t}A_{i}w_{i})] + \lambda_{J_{0}}h_{J_{0}}(u)e.$$
(5.4)

By the feasibility of (u, μ, λ) inequality (5.3) gives

$$-\lambda_{J_{q}}h_{J_{q}}(u) \ge 0, \quad 1 \le q \le r,$$
(5.5)

Since θ_0 and θ_1 are increasing, from (5.4) and (5.5), we have

$$b_{0}(\mathbf{x}, \mathbf{u})\theta_{0}[\{f_{i}(\mathbf{x}) + (\mathbf{x}^{t}A_{i}w_{i}) + \lambda_{J_{0}}h_{J_{0}}(\mathbf{x})e\} - \{f_{i}(\mathbf{u}) + (\mathbf{u}^{t}A_{i}w_{i}) + \lambda_{J_{0}}h_{J_{0}}(\mathbf{u})e\}] \leq 0$$
(5.6)

$$-b_1(\mathbf{x},\mathbf{u})\boldsymbol{\theta}_1\{\boldsymbol{\lambda}_{J_q} \mathbf{h}_{J_q}(\mathbf{u})\} \le 0, \ 1 \le q \le r.$$
(5.7)

By condition (a), from (5.6) and (5.7), we have

$$F(x,u,([\mu\nabla f_{i}(u) + A_{i}w_{i} + \lambda_{J_{0}}h_{J_{0}}(u)e] + (\rho_{i}^{1} + \rho_{j}^{2})d^{2}(x,u)) < 0,$$

$$F(\mathbf{x},\mathbf{u},(\lambda_{J_a}\nabla \mathbf{h}_{J_a}(\mathbf{u}))+\rho_i^2\mathbf{d}^2(\mathbf{x},\mathbf{u})) \leq 0, \ 1 \leq q \leq r.$$

Since $\mu > 0$, the above inequalities give

$$F(\mathbf{x},\mathbf{u};(\mu\nabla f_{i}(\mathbf{u}) + A_{i}\mathbf{w}_{i} + \sum_{q=0}^{r} \lambda\nabla_{J_{q}}h_{J_{q}}(\mathbf{u})) + (\rho_{i}^{1} + \rho_{j}^{2})\mathbf{d}^{2}(\mathbf{x},\mathbf{u})) < 0.$$
(5.8)

Since, J_{q} , $0 \leq q \leq r$, are partitions of the set N, (5.8) is equivalent to

$$F(x,u;([\mu \nabla f_{i}(u) + A_{i}w_{i} + \lambda \nabla h_{i}(u)] + (\rho_{i}^{1} + \rho_{i}^{2})d^{2}(x,u))) < 0,$$

which contradicts (5.1), By condition (b), from (5.6) and (5.7), we have

$$F(x,u;(\mu \nabla f_{i}(u) + A_{i}w_{i} + \lambda_{J_{0}} \nabla h_{J_{0}}(u)e) + (\rho_{i}^{1} + \rho_{i}^{2})d^{2}(x,u)) < 0,$$

 $F(x,u;[\lambda_{J_q}\nabla h_{J_q}(u)]+\rho_j^2d^2(x,u)) \ \le \ 0, \ 1 \le q \le r.$

Since, $\mu \ge 0$, the above inequalities give (5.8), which again contradicts (5.1).

By condition (c), (5.6) and (5.7), we have,

$$F(x,u;(\nabla f_{i}(u) + A_{i}w_{i} + \lambda_{J_{0}}h_{J_{0}}(u)e) + (\rho_{i}^{1} + \rho_{j}^{2})d^{2}(x,u)) < 0,$$

$$F(\mathbf{x},\mathbf{u};[\lambda_{J_q}\nabla h_{J_q}(\mathbf{u})]+\rho_j^2d^2(\mathbf{x},\mathbf{u})) \leq 0, \ 1 \leq q \leq r.$$

Since, $\mu \ge 0$, the above inequalities give (5.8), which again contradicts (5.1). This completes the proof. **Theorem 5.2:** (Strong Duality): Let u^0 be an efficient solution for (NMP) and u^0 satisfies a constraint qualification for (NMP). Then there exist $\mu^0 \in \mathbb{R}^k$ and $\lambda^0 \in \mathbb{R}^m$ such that (u^0, μ^0, λ^0) is feasible for (GNMWMD). If any of the weak duality in theorem 5.1 holds, then (u^0, μ^0, λ^0) is an efficient solution for (GNMWMD).

Proof: Since u^0 is efficient for (NMP) and satisfies a generalized constraint qualification, by the Kuhn-Tucker necessary optimality condition (see Maeda[20]), there exist $\mu^0 > 0$ and $\lambda^0 \ge 0$, such that

$$(\mu^{0}\nabla f_{i}(u^{0}) + A_{i}w_{i}^{0}) + \lambda^{0}\nabla h_{i}(u^{0}) = 0,$$

$$\lambda^{0}h_{j}(u^{0}) = 0, 1 \leq i \leq k,$$

The vector μ^0 may be normalized according to $\mu^0 e = 1$. $\mu^0 > 0$, which gives that the triple (u^0, μ^0, λ^0) is feasible for (GNMWMD). The efficiency of follows from weak duality theorem 5.1 this completes the proof.

6. CONCLUSION

We have used generalized type - I vector valued functions to generalized univex type- I vector-valued functions. We consider a nondifferentiable multiobjective optimization problem involving generalized type-I function with (F,ρ) -univexity. Kuhn-Tucker type sufficient optimality conditions are obtained for a feasible solution to be an efficient solution. Mond-Weir and general Mond-Weir type duality results are also presented. Duality results have been established assuming the functions to be generalized (F, ρ) -univexity.

REFERENCES

- Wolfe, P. (1961): A duality theorem for nonlinear programming; Quart. Appl. Maths., Vol. 19, pp. 239-244.
- [2] Mond B. and Weir T.,(1981): Generalized convexity and duality, In: S.Schaible. W.T. Ziemba(Eds.),Generalized convexity in optimization and Economics,263-280, Academic Press, New York,.
- [3] Rueda N.G, Hanson M. A. & Singh C.,(1995): Optimality and duality with generalized convexity. J. Optim. Theory Appl. 86,491.
- [4] Hanson M. and Mond B.,(1982): Further generalization of convexity in mathematical programming, J.Inform. Optim. Sci. 322-35.
- [5] Aghezzaf B. & Hachimi M.,(2000): Generalized invexity and duality in multiobjective programming problems, J. Global optim. 18, 91.
- [6] Mishra S. K., (1995): V-invex functions and applications to multiple-objective programming problems, Ph. D. Thesis, Banaras Hindu university, Varanasi, India. Japan Vol. 2, pp. 93–97.

- [7] Bector C. R, Suneja S. K., & Gupta S, (1992): Univex functions and univex nonlinear programming in: Proceedings of the Administrative Sciences Association of Canada, 115.
- [8] Mishra S. K.,(1998): On multiple-objective optimization with generalized univexity, J.Math. Anal. Appl.224.131.
- [9] Zhang, J. and Mond, B. (1997): Duality for a nondifferentiable programming problems; Bull. Aust. Math. Soc., Vol. 55, pp. 29-44.
- [10] Ahmad, I. and Sharma, S. (2007): Second order duality for nondifferentiable multiobjective programming problems; Num. Func. Anal. Appl., Vol. 28, pp.975-988.
- [11] Patel. R.B. (2009): Second order duality for nondifferentiable multiobjective programming problems involving second order (b,F,ρ) -convex functions; Adv. in Theo.. and Appl. Math., Vol.4(1-2), pp.149– 164.
- [12] Mond, B., Husain, I. and Durgaprasad, M.V. (1988): Duality for a class of non-differentiable multiple objective programming problems; J. Inf. Opt. Sci., Vol. 9, pp. 331-341.
- [13] Mishra S.K, Ywang S. & Lai K.K., (2005): Optimality and duality multiple-objective optimization under generalized type I university. J. Math. Anal. Appl.303.315.
- [14] Gulati, T.R. and Talaat, N. (1991): Sufficiency and duality in nondifferentiable multiobjective programming; Opsearch, Vol. 28(2), pp. 73-87.
- [15] Caristi G., Ferrara M., & Stefanescu A., (2006): Mathematical programming with (φ,ρ)- invexity in: Igor,
 V., Konnov, Dinh, the Luc, Alexander, M., Rubinov,(eds), Generalized convexity and Related topics,
 lecture notes in Economics and Mathematical system, Vol.583. Springer, 167.
- [16] Egudo R.R, (1989): Efficiency and generalized convex duality for multiobjective programs, J. Math. Anal. Appl. 138.84.
- [17] Marusciac I., (1982): On Fritz John Optimality criterion in multiobjective optimization, Anal. Numer, Theorie Approx. 11.109.
- [18] Dorn W.S.,(1960): A symmetric dual theorem for quadratic programs, J. Oper. Res .Soc.
- [19] Ferrara M. & Stefanescu M.V., (2008): Optimality conditions and duality in Multiobjective programming with (φ, ρ)-invexity, Yugoslav J. Operations Research, 18. 2,153.
- [20] Maeda T, (1994): Constraint qualification in multiobjective optimization problems: differentiable case, J. Optim. Theory Appl. 80.483.
- [21] Ojha D.B.,(2011): Optimality condition and multiobjective programmijn with generalized (φ, ρ)univexity. Kathmandu University J. sci. Ehg. and Tec.Vol.7. No.1,105-112.